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Prcface

The use of the Quantitative Feedback Technique (QFT) in determining designs

that satisfy performance criteria for a set of plants having structured parameter

uncertainties rests heavily on the invertibility of the plant matrix. While other dcsign

constraints are appropriate, it is the requirement for plant invertability that forces

the designer to either square-down or square-up a nonsquare plant matrix. This

study investigates the use of a frequency sensitive weighting matrix in squaring-

dowi a nonsquare plant having more inputs that outputs.

The research portions of this study concentrate in three primary areas: linear

algebra, Hf2 and H,,-norm minimization, and QFT control theory. Without the help

and understanding of experts in each of these areas, it is doubtful that I would have

completed this thesis. As such, I would like to express my gratitude to Professor

Katri, Captain Ridgely, and Professor Houpis.

i,, addition, I would like to thank my advisor Lt Col Le-.vantowicz. His knowl-

edge, research experience, and periodic pep-talks were essential to the completion of

this thesis despite the difficulties that were encountered.

Finally, I would like to thank my wife Ingrid and daughter Doris for enduting

the sleepless nights and curtailed levels of patience that accompanied this thesis

effort..
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T-7 complex congugate of element ij of P.

p( t ) time domain signal or SISO plant.
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Pi =squared-down version of P(jw).
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P(j,,) - Fourier transform of MIMO plant matrix.
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q - aircraft pitch rate.
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Q~i squared-down version of Q(jw).

Q (jLc) = Fourier transform of squaring-down compensator.

QFT Quantitative Feedback Technique.

r = aircraft yaw rate.

r(jw) Fourier transform of aircraft command control input.

Re real part of.

RHP right half plane.

RH_ subspace of H, consisting of real rational functions in H,.

SISO single-input single-output.

sup - supremum value.
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T(jw) control ratio used in developing IMISO equivalent plant.

Ti(jw ) fixed matrices of model-matching problem, i E (1,2,3).

u(jw) Fourier transform of control surface command input.
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U(jLw) premultiplier matrix of a singular value decomposition.
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Abstract

This thesis investigates the selection of the frequency sensitive weighting matrix

nee(ded to convert a nonsquare I x rn plant matrix into a square plant matrix t hat

satisfies Quantitative Feedback Technique (QFT) multiple-input, multiple-outplt

(e.sign constraints. The method of pre-specifying a desirable square plant matrix is

ised in determining the necessary weighting matrix. This studiv assumes that the

no~usquare plant matrix has more inputs than outputs and the option to square-up

is not available (i.e., it is assumed that inaccessible states cannot be reconstructed

d(ie to design limitations).

The thesis examines several topics. The topics include energy and power spec-

tral densities, singular value decompositions of matrices of transfer functions. QFT

design constraints, QFT designs accomplished on nonsquare plants by breaking up

the nonsquare plant into a sum of square plants, and both -12 and fii-norm iiini-

1iization.

While it was desired to pursue this study effort through a comple e QFT design,

problems encountered in obtaining the frequency sensitive weighting matrices needed

to satisfy a pre-determined desirable plant matrix made this impossible in the time

available. As such, neither the optimal squaring-down compensators nor a final QFT

design is presented.

This study concludes with an examination of problems encountered and rec-

onimendations for areas of future study that avoid the described problems.

x



WEIGHTING MATRIX SELECTION

FOR QFT DESIGNS

I. Introd action

This thesis focuses on the selection of a frequency sensitive weighting mat rix

Q(j& ) that converts an original non-square I < in plant transfer matrix P(j.&) into

a sqmtare plant matrix appropriate for a multiple-input, multiple-output (MIIe)

quantitative feedback technique (QFT) design. The plant is assumed to have rn

c,,Jitrol iniputs and I outputs; the number of inputs is further assumed to exceed tlFe

number of outputs (i.e. states) available for feedback. The method of pre-specifying

an I x I desirable plant transfer matrix Pe(jw) whose determinant is minimum-phase

(NlP) is used in determining the necessary nonsquare, rn x l v.eighting matrix Q(j).

This study assumes that inaccessible states cannot be reconstructed via the use of

Li inberger observers or other estimators due to design requireniert.,. The ('1sired

Q(j.-;) is given as the "optimal" solution to

P ,(j,) = PUjC)Q(j c) 1)

Synthesis of a QFT design for a given nonsquare plant transfer matrix P(j-,) is

not. begun until after the weighting matrix Q(j,,)) is determined. Since the select ion

,ri,cess of Q(jw) is not an inherent part of performing a QFT design, the use of a

Q(j,.) weighting matrix should increase design freedom.

It is anticipated that properly selecting the Q(jw) matrix yields a product

matrix P(j,,)Q(j,) whose determinant is MP over all plant parameter variations
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arid whose QFT-lesigned closed-loop performance is better than that achievable by

squaring down P(j./ without the use of any optimization criteria. Improvements are

expected because the Q(j,) weighting matrix acts as a control input mixer to coor-

dinate efforts of different control inputs in order to increase the overall effectveness

of these input, in achieving desirable plant responses.

Different optimization criteria for use in determining a Q(j.) for noninvertible

P(j.) matrices -re examined. A single QFT design problem is examined. While

the completion of a QFT design was desired, the design is not completed because of

p~roblems encountered.

1.1 Background

dF~w) d 2(Q

r(j.,:) Y @, _[----- (jW)

O=O U (j ,,)

Figure 1.1. The QFT Compensated Plan,,

Fligure 1.1 shows the QFT design matrices that are in: erted as a result of

sviot hesizing a QFT design on an 1 x I plant matrix. For purposes of this study, all

system elements are assumed to be expressed in the frequency domain. The system

elements are defined as follows:
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u(j.c) is the control surface command input as seen by the aircraft plant.

r(j,,') is the aircraft command control input provided by an external source.

y(j,,;) is the aircraft plant output.

d1 (j,.') and d 2 (j,) are disturbance inputs.

P(j.') is the uncompensated plant matrix.

F(j.') is the QFT determined input filter or prefilter.

G(j .') is the QFT determined cascade compensator.

For the QFT design problem, the output y(jw) is required to track the com-

niand input r(j..') and to reject the disturbances dl(jw.) and d 2 (jw). The F(j&) and

G(j.') elements are designed to ensure that the sensitivity of the output to uncer-

tainties in P(jc') is acceptable and to attentuate the effects of the two disturbance

inputs. In addition. F(jL,,) is also designed to achieve an acceptable tracking re-

sponse. The actujal design and the cost of feedback are closely related to the extent

of plant uncertainties and to the narrowness of the performance tolerances (7:1.2-

1.3). If a QFT design is performed using dl(jwo) = 0, then the design problem is

referred to as a type 2 disturbance problem. Similarly if a QFT design is performed

using d 2 (jL) = 0. then the design problem is referred to as a type 1 disturbance

problem.

Figure 1.2 reflects the use of a Q(jw) weighting matrix with a nonsquare plant

matrix P(jw). A QFT design for the MIMO system of Figure 1.2 is executed on the

product P(jw)Q(jw). As such, type 1 disturbance problems are defined with dl(jw)

situated between Q(jw) and the G(jw) compensator. Equation (1.1) is established

on the basis of the open loop transfer function between u'(jw) and y(jw) which is

given by

y(jw) = P(jwL)Q(jW)u'(jw) = Pe(jwo)U'(ji)

1-3



rj)+ uJW wy(JW)
F(jw ) G Jw) j Qw)Pdj )

U'(jW)

Figure 1.2. The QFT Compensated Plant with Added Weighting Matrix

A Q(jLw) that minimizes the difference between the two sides of Equation (1.1) with

respect to some criteria is desired.

The selection of elements for the Q(jw) matrix is not as straightforward as

it may seem; the selection process is complicated by the existence of structured

uncertainties in P(jw). By structured uncertainties, it is meant that transfer function

elements of P(jw) vary so that the plant is actually described as a set of plants.

Conversely, unstructured uncertainties are modeled by only specifying boundary

conditions on the magnitude of plant deviations. The set of possible plants is denoted

by P(jw). Each structured parameter variation in P(jw) potentially creates a new

plant P(jw) E P(jw). If the structured plant variations occur over some continuous

r' gc n, then the resultant set of plants is infinite. The objective of the QFT design

process is then to satisfy design specifications for the set of all plants within the

region defined by the structured uncertainties.

Past weightir.g matrix designs have generally sought to select elements of Q(jw)

using engineerirg judgement and guesswork based on the physical characteristics

of the plant and the importance of pij elements of P(jw) to the achievement of

desirable outputs. Early attempts in determining Q(jw) concentrated on a Q(jw) of
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constants only (1, 16). Later attempts by Hamilton and Phillips employed frequency

dependent qij elements in their Q(j.,) (12, 6). Selection methods for the transfer

matrix elements of Q(jw), however, remained a matter of engineering judgement

(i.e.. trial and error). For the trial and error methods previously attempted, closed-

loop pcrformance results have generally served to differentiate between effective and

ineffective choices for the matrix elements of Q(jw).

Additional work is needed to better define selection criteria for elements of

the frequency sensitive weighting matrix Q(jwo). Improvements in optimizing the

selection of Q(j,,) can also be applied to other MIMCO design techniques that use

weighting matrices. An example of such is Porter and Manganas' digital control

design technique that first squares-down a non-square plant matrix into an equivalent

square matrix (13). A squaring-down technique was used by Phillips in his study

(12).

1.2 Problem Statement

This thesis examines the use of H2 and H,-norm minimization as desirable

criteria for defining an optimal Q(jw) compensator to Equation (1.1) for a plant ma-

trix P(jw) with structured uncertainties subject to disturbances dl(jw) and d 2(jw)

under the assumptions that: 1) inaccessible states cannot be reconstructed, 2) P(jwJ)

has more control inputs than outputs available for feedback, and 3) that the desirable

plant matrix Pe(jw) is prespecified. This thesis then examines a design problem for

roll rate and yaw rate tracking controllers for a linearized model of the AFTI/F16

aircraft.

1.3 Review of Current Literature

Quantitative feedback theory is essentially a frequency domain technique that

emphasizes the use of feedback for achieving desired system performance levels de-

spite plant disturbances and structured plant uncertainties. Specifics concerning the
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theoretical basis of QFT and problem applications are available in (3, 7, 9, 22). The

design technique is applicable to discrete and continuous systems for the following

types of problems defined in (3:686-695):

1. Single-input, single-output (SISO) linear time-invariant (LTI) systems,

2. SISO nonlinear systems which are converted to equivalent SISO problems by

first determining an LTI system that yields an equivalent set of permissible

outputs over the set of all possible plants, disturbances, and inputs,

3. Multiple-input, multiple-output (MIMO) LTI systems which are solved as a

set of equivalent multiple-input, single-output (MISO) systems,

-. MIMO nonlinear systems which are first converted to a MIMO LTI problem

via the same methods used to convert SISO nonlinear problems to SISO LTI

problems,

5. Distributed systems.

The use of QFT does not require approximations, linearizations via perturba-

tion models, or the use of describing functions (9:86).

In each of the above five types of problems, solutions to satisfy design param-

eters are guaranteed to exist whenever appropriate QFT criteria are satisfied. One

such condition is that the uncertainty in P(jw) be known or at least bounded (3:695).

Additional conditions apply and are discussed in this study. It is noteworthy to in-

dicate that QFT designs have been successfully applied to plants for which a subset

of the set of all possible uncompensated plants were unstable or nonminimum-phase

(NMP) (9, 7).

For nonsquare plants, the feedback control system of Figure 1.2 is the simplest

of many possible schemes. Horowitz, et al, have suggested several multiple loop

structures that further reduce disturbance impacts and system bandwidths in order

to cope with large plant uncertainties. However, while such multiple loop structures
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outperform single-loop feedback structures, the potential for introducing additional

noise sources and for requiring plant modifications to implement the design are in-

herent drawbacks in the use of multiple-loop feedback structures (9:31-35).

Recently, Yaniv reexamined the MIMO design case (21). ie suggested the

following: "in each design step, say Step m, guarantee that (1 + Lm(l)) has no [right

half plane] RHP zeros for all I e [1, ... , m]; i.e., the same g, designed in step m should

also stabilize the systems (1 + Lm(1)), (1 + Lm(2)), ... , (1 +Lm(m)). G = diag(gii) and

P = diag(fi,) will then be the solution to the problem stated .... " Implementing the

change in the design procedure ensures that all resultant diagonal elements of the

closed-loop transfer matrix have no RHP zeros, thus ensuring that the compensated

system has minimum-phase properties. The Li loop transmission functions are the

Li = viigii of Chapter I. If the loop transmission functions have no RHP zeroes,

then the closed-loop functions of the compensated plant are minimum phase (MP).

Yaniv's suggestion applies to plants that are basically non-interacting (BNIC). A

plant is BNIC when it is highly diagonally dominant. In such cases, the use of a

diagonal F(jw) matrix in the QFT design process is appropriate.

1.3.1 Model Matching In order to accomplish the stated objectives - to ex-

amine the use of H2 and H.-norm minimization as desirable criteria for defining

an optimal Q(jw) compensator to Equation (1.1) - it is necessary to examine a

standard problem referred to as the model-matching problem. To this end, the bi-

lateral model-matching problem is established and then related to Equation (1.1) by

redefining elements of the model-matching problem.

1-7



vI Ij z(jw)

Figure 1.3. Model Matching Problem

Figure 1.3 is the model-matching problem set-up, where each of the T-(Jw,),

i E (1,2, 3) are fixed and Q(jw) is an unknown compensator matrix.

The objective of model-matching is to design a stable cuitroller Q(jw) that

minimizes the difference between the input-output responses of Tl(jw) and the

cascaded T 2(j), Q(jw), and T3 (j";) transfer matrices. Depending on the model-

matching criterion used, the problem is defined to either minimize the energy of the

error z(jw) for the worst possible input v(jw) or to minimize the largest error in the

magnitude of z(jw) for the worst possible input v(jw). In the first case, the problem

is termed an H2-norm minimization problem, while in the latter case it is termed

an H -norm minimization problem. The minimization requirement is given by the

following equation.

inf IIb(Ji,)1,2,. = inf IITI(jw) - T 2 (jw)Q(jw)T3 (jw)II 2,. (1.2)
QERHo QERH 0
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where inf is the infimum for Q(jw) in the space of real rational, proper stable

transfer functions. To be proper, the order of the numerator polynomial of Q(jw) is

less than or equal to the order of the denominator polynomial. To be real rational,

the transfer functions of Q(jw) must be expressible as a finite ratio of polynomials

in J, with real constants.

Solutions to the model-matching problem play an important role in H2 and H"-

norm optimization (see, for example (5)). However, because this study is directly

interested with the model-matching problem, no effort is made to go into H 2 and

H -norm optimization theory.

For this study the model-matching problem is applied to the QFT problem of

determining an optimal Q(jw) with respect to Equation (1.1) by redefining Tj(juw) =

Pe(jw), T 2 (jw) = P(jw), and T 3(jw) = I. To do so however, requires that transfer

function elements of Pe(jw) be stable (else, Pe(jw) is in neither of the two Hardy

spaces of interest and norm-minimization is not applicable). Also note that for

structured uncertainty problems, H2-norm minimization is generally considered more

appropriate than the use of H,-norm minimization.

1.4 Assumptions

The following assumptions are made.

It is assumed that the designer has either a linear state space model of the

system or can establish an LTI equivalent. A linear state space model is of the form

i = Ax + Bu (1.3)

y = Cx + Du (1.4)

1-9



where the A, B, C, and D elements of the equation are real matrices, and x, y. and

u are vectors.

An LTI equivalent for most nonlinear plants can be determined for the purposes

of QFT designs. The LTI equivalent plant is basically established by determining

nonlinear system outputs as a function of system inputs at particular frequencies

and then calculating that equivalent set of linear plants that produce comparable

outputs under similar input conditions and for the given particular frequencies. An

outline for determining LTI equivalent plants, and conditions for their solvability is

given by Horowitz, et a!, in (9:36-44).

The AFTI/F16 aircraft control example used in this study is developed under

the following assumptions:

1. Aircraft equations of motions are linearized about the nominal equilibrium

(trim) condition of Mach 0.9 at 20,000 feet. The model is assumed valid for

small perturbations about the nominal conditions. No effort is made to

determine aircraft performance in regions outside the restrictions

imposed by the model.

2. Mass of aircraft remains constant.

3. Aircraft is symmetrical with reference to a vertical plane aligned with the

longtitudinal axis of the aircraft.

4. Aircraft thrust remains constant.

5. Earth origin is taken as an acceptable inertial reference.

6. Atmosphere is a homogeneous mixture at rest with respect to the earth.

7. Dimensional stability derivatives are constant for the given flight and surface

failure conditions modeled.
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S. Control system failures can be described by scaling the elements of the B

matrix. A reduction in the magnitude of elements of the B matrix is used to

represent gradual loss of control surface effectiveness.

(a) The portion of the control surface that has failed is assumed locked in the

position associated with a trim flight condition.

(b) Surface failures are assumed to provide no other impact on flight dynamiics

other than a reduction in the effectiveness of the control surface.

(c) Control surface failures are assummed to not impact aircraft stability;

that is, with control surface failures modeled by scaling columns of the B

matrix, the plant's characteristic equation does not change.

9. The dynamic behavior of the plant's components in response to inputs is

assumed describable by finite-dimensional Laplace transfer functions. See

(12, 10).

10. Sensor characteristics are sich that, for QFT desigii purposes, the problem can

be modeled as a type 2 disturbance problem.

1.5 Plan of Approach

The following is the plan of approach for this study:

1. A linearized plant model is selected for problem study. The plant model has

three inputs (aileron, rudder, and horizontal tail deflections) and three out-

puts of interest (sideslip angle /3, roll rate p, and yaw rate r). The objective

of the design is to provide roll and yaw rate responses that satisfy class IV

aircraft level I flying qualities (4:412). For purposes of this study, sideslip is

not available for feedback.

2. Using the performance objectives specified in Chapter III, a desirable plant

Pe(jW) is selected to satisfy desirable plant characteristics described in (3) and
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(7) and design criteria, in (4:412). The objective is to determine a Q(j ), such

that

(a) The product of P(jw) and Q(jw) is a square matrix.

(b) The product P(jw)Q(jw) is non-singular over the entire range of plant

uncertainties. Letting "Pe(jw) be the set of all equivalent plants formed

by the product P(jw)Q(jw) for any P(jw) Cz P(jw), this condition is

equivalently stated by requiring that Pe(jw) be nonsingular over the set

of possible equivalent plants. Note that this condition is applied to the

functions in Pe(jw) E PTe(jw) and not to evaluations of the functions at

particular frequencies.

(c) The product P(jw)Q(jw) satisfies a diagonal dominance condition over

the range of plant uncertainties. This condition ensures that the diagonal

transfer functions dominate the system's response to control inputs over

the entire range of plant parameter variations in the high frequency range

(i.e, above some cut-off frequency). As such the evaluation is conducted

as w --+ oc. A more severe version of the diagonal dominance condition

is Rosenbrock's diagonal dominance requirement. Rosenbrock's diagonal

dominance requirement is, however, not a constraint that must be satisfied

prior to seeking a QFT design.

(d) The poles of P. 1(jw) lie in the LHP over the range of plant uncertainties.

In performing a QFT design, the mij elements of P.1(jw) are individually

inverted. As such, all poles of the mi must be in the LHP to guarantee

that the r<s' are MP. To satisfy this criteria requires that factors of the

determinant det(Pe(jw)) all lie in the LHP over the set of all possible

plants.

3. The Pe(jw) chosen for use in the optimization part of this study is

1-12



with

Peli = 562.5/[(j¢w + 10)(-W 2 + 9jw + 56.25)]

PeI2 = (jw + .oo1)![(jw + 1O)'(-w 2 + 9j'w + 56.25)]

Pe l = PeI 2

Pe22 = Pe

(1.6)

4. With Pe(jw) specified, the Q(jw) weighting matrix is determined in accordance

with optimization selection criteria developed in Chapter II. The Q(jw) matrix

is of the format shown in the following equation with the qij being the transfer

function elements of Q(jw).

( q1I q12

Qjw) q21 q22 (1.7)

q31 q32

A QFT design is then performed using the product P(jw)Q(jw). Design objec-

tive is to maintain class I roll and yaw performance handling qualities for the

set of healthy and degraded plants. However, due to problems encountered,
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this study was not able to obtain an acceptable Q(jw). As such a QFT design

for the plant described and an evaluation of the design is not accomplished.

1.6 Scope

The method of specified outputs applies. The objective of the Q(jw) matrix is

to minimize the difference between the original plant transfer matrix and a prespec-

ified, more desirable equivalent plant matrix Pe(jw).

All analyses are performed in the frequency domain; digital considerations are

not addressed. It is noted; however, that both quantitative feedback theory and H2

and H -norm minimization are applicable to both discrete and continuous functions.

As such, criteria and methodologies examined in this study are applicable to discrete

systems.

1.7 Presentation

Chapter If provides an overview of pertinent theoretical information. Sections

of Chapter II address QFT theory while focusing on those plant properties that must

be satisfied if a QFT design is 'o be attempted. Optimal means for determining

Q (jc) are also examined.

Chapter III explores applications of QFT and weighting matrix selection crite-

ria to a tracking problem using the lateral-directional model of the AFTI/F16. The

selection of Pe(jw) and results concerning efforts to obtain Q(jw) are presented.

Chapter IV summarizes conclusions of this study and provides pertinent rec-

om mendations.
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I. Theoretical Background

2.1 Introduction

The theoretical background for this study is presented as follows. First energy

and power spectral density relationships both in the time and frequency domains are

stated. Then, in order to provide a basis for subsequent discussions concerning sin-

gular values, the singular valuie decomposition of matrices of constants and matrices

of fi'actions in j.: are examined. An effort is made to determine the availability of

transfer function descriptions for defining elements of the singular value decornpo-

sition of matrices of functions as a means of determining optimal solutions to the

model-matching problem.

With the basics thus established, H2 and H,,-norm minimization definitions

are made and relationships defined between the norm minimization criteria and

lhe energy and power spectral densities. The Quantitative Feedback Technique is

next ex'amined: both the basis of the MISO equivalent QFT design method and

the source of the QFT design criteria are established. Because of the importance

(,f the minimum-phase property to QFT, the impact of nonminimum-phase ;2lants

and methods available for determining when a plant is NMP are next examined.

In addition. each of these methods is examined in the context of its usefulness for

establishing criteria in selecting Q(jwc) weighting matrices that guarantee that the

pro(luct P(j ..)Q(j.;) is MP for all plant parameter variations.

:inally. each of the QF'T design criteria is reexamined with the goal of dte-

termining how the criteria impact the selection of the frequency sensitive weighting

matrix Q(j#) and how H2 and H ,-normns can be used to define a Q(j ) that is

(optirial with respect to Equation (1.1) whenever transfer function elements of P(j&)

atr known stable for all plant parameter variations.
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2.! .5pcctral Functions

Equation 2.1 represents the function of time p(t) as a contir, uods sum of scalar

exponential functions of frequency p(jw'); p(jw) is the Fourier transform or Fourier

.,pctrum, of p(t). The relationship between p(t) and p(jw) is

1Pt p(Je)Cj.tc (2.1)p~t) - 27r .-o

p(jW,,) = fp(t)e-tdt (2.2)

. signal of finite energy can be described by a continuous spectral-density

function by obtaining the Fourier transform of the signal (Equation (2.2)). The

Foiirier transform of the signal, in turn, can be found by setting s = j ' in the

Laplace transform of p(t), whenever both of the following conditions are true.

1. p(t) = 0 for t < 0. and

2. p(t) has finite energy, that is, ff2, Ip(t)12dt < oc.

Since it is assumed that all functions of time used in this study satisfy the

ab-cve conditions , the function p(jw) is obtainable by substituting jw, for s in the

Laplace transform of p(t). As a result, while all functions in the remainder of this

chapter are functions either of time t or frequency w', the existence ui' the Laplace

trans. rms of p(t) is assumed in order to obtain p(jw).

In contrast to continuous functions, periodic waveforms and the dc components

of a signal have all of their amplitude components at discrete requencies. To por-

tray the amplitude components of a periodic waveform on a spectral density graph

TlIhe most rommon convention in defining the transform coefficients is in use here. See (11 i 10-
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requires the use of impulse functions. The area (weight) of an impulse is the magni-

tule of the time function's amplitude and the spectral position of that component

is the frequency at which the impulse occurs. (18:83-84).

If a signal p(t) represents a voltage, then p(jw) has dimensions of voltage

multiplied by time. The area under the spectral density function p(j,,), therefore,

has dimensions of voltage because frequency has dimensions of inverse time. Each

point on a plot of p(j,..) versus ,' indicates the relative weighting of each frequency

component. As such, plots of p(jw) versus w can be considered as density functions.

The contribution of a given frequency band to the representation of p(t) is found by

it egrating p(j..') over the bandwidth area.

The square of the absolute value of p(t) is called the energy spectral density or

,nergy spectrum of p(t). From the mathematics of the Fourier integral, and both

R{ayleigh's and Parseval's theorems (18:85), the energy of a signal E is given by

E = Ip(t)l2dt

2 J (jw,,)p(jw)dw

I for-I p(jw)12dw (2.3)

In this thesis, only real valued functions of time are considered. Thus, Ip(t)12 =

1) (2j By examining Equation (2.3), it is seen that the energy spectral density is

exprcssible in either the time or frequency domain. Energy contributions of a given

frequency band are found by integrating over the desired bandwidth. The total

systein energy E is found by integrating over (-o, co). Since the energy spectral

lensities of real valued signals are even, E is also twice the value found by integrating

pgj,,) over the interval [0, oc).
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In the metric system of units, energy E is measured in joules. Hence, the

units of the energy density in the time domain must be (joules)2 / second and in the

frequency domain (joules) 2/ Hertz.

Table 2.1 lists common energy-storage elements that exist in physical systems,

and the corresponding energy equations for E. The table provides insight into the

use of spectral energy density functions in units other than voltage. Table data is

extracted from (3). In the generalized sense, energy density expressions are given as

(quantity)2/ Hertz.

Table 2.1. Energy-storage Elements

Element Energy Variable

Canacitor C C"_ Voltage v2

Inductor L Li' Current i
2

Mass 1 MV
2  Translational Velocity v

2

Moment of Inertia J J' 2  Rotational Velocity W
2

Spring K KX
2  Displacement x

L._ -2-- I

For many applications, the power spectral density or power spectrum is of more

interest than the energy spectrum. To describe differences between the energy and

power spectral densities first requires an explanation of the characterictics of energy

and power signals.

An energy signal is one that: (1) has finite energy content, (2) zero average

power (since the finite energy content over infinite time yields zero), and whose form

is non-periodic and deterministic. A power signal, on the other hand, is one that:

(I) has finite average power, (2) infinite energy, and (3) whose form is that of either

a periodic or random signal extending infinitely over time.

Since energy and power signals are inherently different, it follows that the

functions describing energy and power verz,!s time or frequency are different for the
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two types of signals.

The time-averaged power of a signal is given by (18:156)

P -= lim T p 2 (t)dt (2.4)

In a manner analagous with the definition of the energy E through the use of

the energy spectral density, the time-averaged power is defined in terms of a power

spectral density Sf(jL.) by

1 j_"

P, 1I00 Sf(jw)dw (2.5)
2ir oo

For both random and deterministic signals whose power spectral densities

do not vary with time, the power spectral density function is obtained by taking

the Fourier transform of the autocorrelation function. The autocorrelation function

Rj(r) (18:168-169) is given as

2'Rf (r) = iim-J! p(t+r)p(t) dt (2.6)

with Sf(jw) in Equation (2.5) given as Sf(jw) = f- oo Rf(r)e -jwrdr. For random,

stationary signals (i.e., random signals whose statistics do not change as a function

of time), the autocorrelation function is given by

Rf(r) = E{p(t)p(t + r)} (2.7)
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where Rjf(r) is found by time averaging (taking the expectation of) a statistical

function assumed to be ergodic ( functions whose characteristics are such that time

averaging a single signal yields the same statistics as obtaining the ensemble average;

note that ergodicity, in turn, implies stationarity (but not vice versa)) (18:471-480).

Certain nonperiodic power signals are not Fourier transformable; in such cases the

power spectral density of the signal is expressed in a "limiting" sense (18:488-410).

Power spectral densities of periodic and random signail are real, even, and

nonnegative functions of frequency. In the metriz system of units, the power P1 is

measured in watts. Hence, the units cf the power density are watts/Hertz for Sf(jw).

2..3 Singular Value Decompositions of Matrices of Constants

lhe factorization of a real symmetric matrix P into P 1 UU , UUr = I, and

with the eigenvalues of P in the diagonal matrix E, is known as the spectral theorem.

The matrix U ;s termed unitary, eigenvectors of U are orthonormal. The key to

understanding the relationship between singular value decomposition (which applies

to real symmetric matrices) and the spectral theorem (which applies to any matrix

P) is to recognize that the matrix products ppT and pTp are always symmetric.

The singular value decomposition theorem provides that any real I x m matrix

P can be factored into P = U V r = (unitary)(diagonal)(unitary), where columns

of U ( I x I ) are eigenvector,, of ppT, columns of V ( m x m ) are eigenvectors

of pTp. and where the diagonal entries of I ( 1 x m ) are the real, non-negative

values that are termed the singular values of P. For complex matrices, V is real and

both U and V are unitary (i.e., U*U = I and V*V = I where (.)* is the conjugate

transpose operation) (17:298,442-443). Note that for nonsquare P, V is nonsquare.

For example, consider
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4 -j 5 -j 6-j)

The singular value decomposition for P = UEV* is given by

0 3331 + 0.4864j 0J. 1322 + 6 3 1IJ
0.7931 - 0.1533j -0.4411 + 0.3911j

(1.0528 0 0

0 0.9137 0

0.4190 0.5649 0.7108

V= -0.8110 -0.1191 0.5728

0.4082 -0.8165 0.4082

A connection between PP* and P*P is evident. The eigenvalues of PP* and

P'P are the same. This is readily seen by observing that substitution of the sin-

gular value decomposition of P into PP* and P*P results in eigenvalue-preserving

similarity transformations.

PP- = UEV- (UEV-)-

= UEE*U" (2.8)

and similarly,
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P-P = (UEV7 UEV

= VE*EV* (2.9)

so that in each case, similarity transformations on either EE" or E*E are obtained.

Most applications involving singular value decompositions take advantage of

the numerical stability inherent in performing calculations using the decomposed

form of the P matrix. Computational stability is provided by the orthogonality of

the U and V matrices since x*U*Ux = x'x. However, such a statement cannot be

made about E. Nevertheless, E is as accurate as possible, and it reveals the kind of

numerical stability problems which can be encountered (17:444).

Another use of the singular value decomposition of a matrix P is in finding the

pseudoinverse of P. The pseudoinverse of a matrix provides the minimum length

projection solution to an inconsistent set of equations.

If the singular value decomposition of P is given as P = UEV*, then the

pseudoinverse of P, denoted as P+, is (17:449)

P+ = VE+U* (2.10)

where the singular values of P are on the diagonal of E, and the reciprocals, in the

same order, are on the diagonal of E+ .

Using the previous example in this section, the pseudoinverse of P is given as

P+ = VE+U*, whcre
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0.4190 --0.8110 0.4082

V= 0.5649 -0.1191 -0.8165

0.7108 0.5728 0.4082

(1 0
S 11.0528

0 0

U.= 0.3331 - .4864j 0.7931 + .1533j
0.7322 - .3411j -0.4411 - .3911j)

With these results established, the following claim is made. If B is any ma-

trix whose nonzero singular values are the same as those of P, then there exists a

transformation matrix T that satisfies T*B*BT = P*P. This claim parallels the

invariance of the characteristic equation of a square plant transfer matrix presented

in (3:170).

Let P = UpEpV;, and B = UBEBV; such that the nonzero singular values of

P*P and B*B are equal. By assumption, one of the following cases applies:

case a: = EB

case b: E,(Ep 'BB 0
0 0

z p 0
case c: ZB= ( 0

where the 0 submatrices are chosen to provide conformability between E Ep and

EZ"YB. If case a, then
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E;E B = "VpEP

VPY V;= VpEu;upEv;

VpEBEBV; = P*P

VpVVBE;EBV;VBV; = P*P

VpVjB-BVBV;, = P*P

Hence, select

T = VBV; (2.11)

The desired transformations for cases b and c are similarly obtained.

2.4 Singular Value Decompositions of P(jw) Matrices

Both MATRIX., and MACSYMA can be used to obtain singular value de-

compositions of matrices whose entries are constants. For example, the MATRIX.

"SVD" command is used to obtain the singular value decomposition of any matrix

of constants (8:4-27).

MACSYMA, however, is capable of performing numeric and symbolic manipu-

lations. While MACSYMA has no command for directly obtaining the singular value

decomposition of a matrix of transfer functions; the "unit eigenvectors" command

is available for obtaining eigenvectors and eigenvalues of PP* and P*P needed to

construct the U, E , and V* matrices (19:12-14). In using MACSYMA, the E matrix

is obtained as the matrix formed by placing the square root of eigenvalues of PP*
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along the diagonal. While MACSYMA appears to have the desired capability, it

must be noted that for even a simple 2 x 3 test case using a matrix whose elements

were of the form a/(jw + b), with a and b constant, MACSYMA requires several pro-

cessing hours and returns a solution that is extremely difficult to interpret. For more

complex matrices, MACSYMA is unable to return the desired information because

of tne sizc of the pol!r'mials involved in performing necessary calculations.

As such, if the singular value decomposition of a matrix of transfer functions

P(j.,') is desired, it is necessary to use numerical means to estimate elements of the

decomposition.

The method followed is to repeatedly obtain the singular value decomposition

of a matrix P(jw) evaluated at frequencies in an interval of interest. Points obtained

using the pointwise decomposition of P(jw) are then plotted to yield magnitude and

phase plots of each element in U(jw), V(jw), and E(w). The objective is to then

estimate the transfer function elements of each matrix element by using curve fitting

approximations.

The following P(jw) is used as a test case.

(jw-1)(jw+1) (j,+2) 3
(jw+1 )(jw+2)(j-+4) (j-+l )(jwv+2)(jw+4) (jo+1)(jw.+2)(jw+4)

eULjc) =

(jw+2)(j-+3) (jw+4)
(jw+1)(juw+2)(jw+4) (w+1)(jw+2)(jw+4)

The matrix P(jw) is evaluated at w over the interval [ .001, 1000 ] and results

obtained (see Figures 2.1 through 2.5).

The continuous lines of Figure 2.1 are plots of the ai(w) and a2(w) transfer

function elements of E(w) as a function of frequency w (the dotted lines are approx-

imations to the functions). The plot of o'1 (w) is the upper plot of Figure 2.1 while

that of a2(w) is the lower plot. Each of the ai(w) plots is a nonnegative function

with zero phase for all w. Note that a real-rational function in w cannot be used
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Figure 2. 1. Plots of ol(w) and a2(w)
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to describe a 1(.,) and Or2(w). As such, any description of the (7i(") plots i accom-

plished either by seperately describing the magnitude and phase of the function. or

hv using functions which are not real-rational.

Ihe continuous lines of Figures 2.2 through 2.5 are plots of the t-ansfer function

elements uj(j'), i = 1,2, j = 1,2, of U(jw). Note that ujj(j c) and U12(j) cannot

be (lescribed as real rational functions of j . From (3:268), the phase difference

at - is 9 0 x (n - w), where (n - w) is the difference in the orders of the

dlenominator and numerator polynomials of a transfer function. For the given plots,

the phase plots of til and of u,. indicate that (n- w) is odd. However, the zero slopes

for each of these plots as ,' -4 o indicate that the difference in the orders of the

polynomials is zero. Hence. any description of the un(jw) and u1(j.') must again

he rnadfe either by separately' describing the magnitude and phase of the function.

or b) separately describing the real and imaginary parts of the function. There can

he no real rational function in j: to describe the first column entries of U(j ').

Having commented on the existence of functions needed to describe E(w ) and

Ui'j,.). a curve fitting approximation is obtained for each of the provided plots. Using

U(_.) to indicate the magnitude of the function, and ZU(w) to indicate the phase,

Oh elements of E( ) and U(j 4 ) are approximated to be as follows. Elements of

V" (j) (if desired) are similarly obtained.

[ 0.994 1} 0 0

tW2 +0.994

S0.994 ](W2+2 8 .0 9 2

0.702(j3+2.
7
1 )(ju+3.75) 0.711 (jw+ 1 )(j.+ 17)

(jw+ l.04
4 )(jw+l 2.9)

IU(jW.)I

I_0.711(j________ju __17 0.702(pw+2.71)(7w+3 .751
j La+1.044)( 1 w +12.9) (jw+16

7)(j+9.8) I
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j+ 2)3  
j+)

ZU(j") =

The dotted lines of Figures 2.1 through 2.5 result from the determined approx-

imations. In Figure 2.1, the dotted lines overlap the continuous (actual) functions

quite well. If U*(jw) is required, it is obtainable as U*(jw) = JU(j'') - 1 L- u(j;).

Before closing this section, two final notes are made. First, the elements of the

E(,;) and U(jw) are approximations. It is generally impossible to find a real-rational

functions in jw' that produce the curves obtained for elements of the U(jw), E(W),

and V(jw) matrices.

Second, the functions used in the test example are simple, well-behaved func-

tions. There is no occurrence of a singular value crossing. If a crossing had occurred,

discontinuous descriptions of functions may have been necessary. However since the

process of curve fitting is imperfect, function discontinuities may actually go unno-

ticed in obtaining a workable singular value decomposition.

Hence, approximations to the singular value decomposition of a matrix of

transfer functions P(jw) are obtainable. However, because of inherent difficulties

in obtaining acceptable curve fitting approximations to polynomials of higher order

than are used in the example P(jw), the use of the singular value decomposition for

obtaining solutions to the model-matching problem is limited.

2.5 Spectral Relationships Using Singular Values

Assume o, is a singular value function of a matrix P, that P(jw) is the Fourier

transform of P(t) and that P(jw) is obtainable from P(t). 2

2The term P is used in this section to indicate that either P(t), or P(jw) is in use; when there
is a need to differentiate, clarification is made.
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The function defining the singular values oi of P as the positive square root of

the eigenvalues A of P*P is given by

o,(P) = A2 (P-P) (2.12)

where A satisfies the determinant (det) equation

det(AI - P-P) = 0 (2.13)

Let A = P*P. Then for A = [aij1 mxm and P assumed to be I x m, Equation

(2.13) is expanded to yield

(A-all) + a1 2  + ... + aim
a 21  + (A-a 22) ... a2m mXm

aml + am2 + ... + (A ,)

From the above set of equations, the characteristic equation of A is determined. The

characteristic equation is given by

Am + klA(m- 1 ) + ... + km_ 1 A + km = 0 (2.14)

Written in factored form, Equation (2.14) becomes

(A - Aj)(A - A2 ) ... (A - Am_,)(A - Am) = 0 (2.15)
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The following is known concerning the sums and products of the Ai eigenvalues

of any square matrix A (2:208-209):

m

Ai = trac(A) (2.16)

1i A, = km (2.17)
i=l

The product of two matrices M, and A, 2 M,M, = [Cij]n' m and A!2 = [13,j]mXq,

is defined by

[,ai,]nX . [i/3im1Xq = [-,i]nXq (2.18)

where

M
E ak3kj = -y; i= 1,2,... n, j=1,2,...q (2.19)
k=1

For A = P*P, P = [pij] qx' and P* = [pji]n×q , Equation (2.19) yields

q
= i - Z- Pk,Pkj; i,j = 1,2,... n (2.20)

k=1
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To obtain elements of the trace(A) = trace(PP), set i = j and obtain

q

S=Zi PkiPki Z = 1,2,...,n (2.21)
k=1

so that trace(A) = trace(P*P) is given by

n n q

trace(A) = = E PTkPk, (2.22)
i=1 k=1

Equations (2.16) and (2.22) are combined to yield

n n q

Ai = E TkPki (2.23)
i--1 i=1 k=1

Hence, if the pki are replaced by their Fourier transforms, it can be concluded

that the sum of the squared singular values of P(jw) (the matrix whose elements are

the Pki(Jw) ) evaluated at any frequency equals the system's total spectral energy

density function (the sum of the pkj(jw)pki(jw) evaluated at the same frequency).

Integrating Equation (2.23), and comparing it to Equation (2.3) indicates that

the total energy E in a system is given by

0,nq

E~j-]_ Z ~~(t)dtE -27r 00 i=1 k=1

2_ J Ai(t)dt (2.24)
2 r 2=
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21 0 tracc(A(t))dt 
(2.25)2r

For fun-tions in the frequency domain, E is given by 3

E - r i=1 k=I

- 2 IJ Ai(jw)dw (2.26)
27r i=1

2.6 Spectral Relationships to Norm Minimization

To begin this section, the Hardy spaces known as H2 and HO are defined.

The H2 space consists of all compex-valued functions P(jw) that are analytic

in the open right half plane and that satisfy the following condition

(~J~trace[P*(jw)P*(jwu)]dw) < 00 (2.2-7)

The left hand side of the inequality is defined to be the H2-norm of P(jw), and

is denoted as IIP(jw)1 2.

Alternately, H. consists of all complex-valued functions P(jw) which are an-

alytic and bounded in the open right half plane. By bounded, it is meant that there

exists a real number b such that

3Eigenvalues of P*P equal the singular values of P*P (proof given later). Hence, the Ai(jw) in
Equation (2.26) are nonnegative functions of jw.
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oimax[P(jw)] _ b (2.28)

where rmax represents the largest singular value of P(jw). The least such bound b is

the H,-norm of P(jw), denoted IIP(ji)11,. Equivalently

IIP(j')Il. = sup a z.a[P(jw)] (2.29)

where sup over w is the supremum of the maximum singular value 0ax of P(jw)

over all frequencies.

Relationships between the H2 and H.-norms and the power and spectral den-

sities are now defined. Equations (2.26) and (2.27) are combined to obtain

1 00 q 1
iiP(jw)1i 2 = (-I E E j-(jw)pki(j)dw) f

1r =1 k=1

2=1

= v'- (2.30)

Hence, for any signal v(jw), the H2-norm of v(jw) is interpretable as the square

root of the energy of the signal. This fact is noted by Francis (5:6). That the H2 -

norm is also related to the trace of the power spectrum is obvious after substituting

Equation (2.12) into Equation (2.29).

Now the standard model-matching problem is considered. The objective of

2-23



v(jT) ' Qjw)

Figure 2.6. Model-Matching Problem

model-matching is to minimize 1I1,(jw)il where 114(jw)I = JITI (jW)-T 2 (jW)Q(jWT 3 (jW)jj,

T i (w) fixed and Q(jw) unknown (see Figure 2.6). By comparing the model-matching

problem with Equation (2.30), it is concluded that H 2-norm minimization minimizes

the total energy of 4((jw). A similar relationship exists for the H.-norm.

Squaring both sides of Equation (2.29) and lettingo,2 ., denote the square of

the maximum singular, equations (2.12) and (2.29) are applied to obtain the following

series of equalities.

IIP(iw)II[ = (sup 0,mre [P(jw)]) 2

= sup ar2. [P(jw)]

w

-sup A [P*(iw)P(jw)]* [P(j)P(j )]

= sup OA.- [P'(jw,)P(jw)] (2.31)2
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In addition, based upon equalities between intermediate steps in Equation (2.31), it

is also concluded that

sup amo. [P*(jw)P(jw)] = sup A,,. [P*(jw)P(jw)] (2.32)

Equation (2.32) indicates that the singular values of any Hermetian matrix .4 =

[P'(jw)P(jw)] equal the eigenvalues of A. As such, the eigenvalues of [P*(jw)P(jw)]

are nonnegative.

Next, the product of a unitary matrix U(jw) and a matrix P(jw) is formed.

The Ho-norm of the product is given by

Ilu(j) P(jw)II = sup Uax [U(jw) P(jw)]

= sup Aaxa [U(j,) P(jw)]* [U(jw) P(jw)]

= sup A [P*(jW) U*(jw)U(jw) P(jw)]

sup ,\2. [P*(jW)P(jW)]

= 11POjW)II.

Similarly, it can be shown that jIP(jw)U(jw)jj = jjP(jw)]ljo.

As a result, it is concluded that the Hoo-norm of matrices formed by the pre-

or post-multiplication of any matrix P(jw) by unitary matrices is the H"-norm of

P(jw) alone.

A parallel result concerning the H2-norm of unitary matrices can also be shown.

That is,
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(JU(jw) P(jw)1I2  = trace[[U(jw)P(jw)]" [U(jw)P(jw)]]&d)i2

1_ 0
= (27r trace[P-(jw)U*(jw) U(jw)P(jw)]dw)l

2- f j trace[P*(jw) P(jw)]dw)"

- jjP(jW)1 2

and,

I1P(jW) U(jw)04 2 = (1 trace[[P(jw)U(jw)]- [P(jw)U(jw)]jd) 2
27r -oo

7(r J trace[[P(jw)U(jw)] [P(j) U (jw)d 2

- IIP(jw)112

where the fact that trace(AB) = trace(BA) is used. Thus unitary matrices are both

H2 and H-norm invariant. Multiplying any matrix by a unitary matrix does not

change either its H2 or H-norm. In addition, it is also concluded that inherent

differences between energy and power signals makes the choice of whether to use H2

or H-norm minimization criteria application dependent.

2.7 Boundaries on Model Matching Problem Solutions

A sufficient condition for the existence of a solution to the model matching

problem is provided by Theorem 1.1 (5). The theorem states that an optimal Q(jw)

to the model matching problem exists if the ranks of the T 2 (jw) and T3(jw) are
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constant for all 0 < w < oo.

Now again consider Equation (2.1), the minimization equation using the H2 or

fL-norm. As both the H2 and the H,,-norm are normed spaces, they satisfy the

Schwartz-inequality and hence

II'((j') 12,c = IlT(jw) - T 2 (jc)Q(jw)T 3 (jw) 112,. (2.33)

implies that

II'(jw)112 ,. -< i1T1(jw) 112 ,. -- I T2(jw)Q(jw)T 3(jw )l2,. (2.34)

Using the above equation and inequality, we are able to define both a lower and an

upper bound for model matching problem solutions. The lower bound is given when

Ti(jw) = [T 2 (jw)Q(jw)T 3 (jw)] in which case II$(jW)I 2,C' = 0.

The upper bound is given by setting Q(jw) = 0 in which case ib(jw)jj, =

IITi(jw)II 2,.. Hence, if a solution exists, then the optimal solution can be sought via

an iterative process on selections of Q(jw) E RHo, since the following inequality is

always satisfied

0 < ,b(jw)1 2,. < lITI(jw)112,. (2.35)

The Quantitative Feedback Technique is now examined before relating QFT

to the use of H2 and H,, minimization.
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2. The Quantitative Feedback Technique

Figure 2.7 represents an I x I MIMO closed-loop system in which F(jW) is the

matrix of prefilter transfer functions, G(jw) is the matrix of compensating transfer

functions, and Pe(jL') = P(j ')Q(jL'). Note that the feedback matrix is set to I, since

an equivalent cascade compensator with prefilter is determinable for any nonunity

expression that could be used here.

r. + e(jwu) Y UW)

SF(jL.4.) G G(jW) Pe(jW)

Figure 2.7. The QFT Compensated Equivalent Plant

When performing a QFT design, the compensator G(jw) is typically assumed

diagonal. The use of nondiagonal G(jw) matrices has been used in the past to give

designers more flexibility in their designs (3:698). However, the use of nondiagonal

G(j,,) increases the work associated with determining G(jw).
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From Figure 2.7, the following equations can be written:

y(j,) = Pe(j;)G(j_)e(jw) (2.36)

e(j ) = F(jw)r(jw) - y(j .,) (2.37)

y(j&) = [I + Pe(jw)G(jw)]-'Pe(jw)G(jw)F(j .)r(jwz) (2.38)

Equation (2.38) above gives the MIMO system control ratio T(jL,') relating

r(j.&) to y(jw.?) as

T(j ') = [I + Pe(jw)G(jw)]-'Pe(jwa)G(jw)F(jw) (2.39)

The QFT design procedure requires finding the unknown transfer function el-

entents of G(jw) and F(jw), by using performance specifications to define tolerance

bounds on the transfer function elements of [I + Pe(jw)G(jw)]-'Pe(jw)G(jwL)F(j,).

To do so, a mapping between a MIMO plant and a set of equivalent multiple-input,

single-output (MISO) control systems is defined. The mapping results in 12 equiva-

lent systems for a MIMO plant Pe(jw) assumed to be I x 1, with each transfer function

of the equivalent MISO system assumed to have two inputs and one output. Of the

two inputs, one is designated the desirable input, while the other is designated the

"'disturbance" input (3:696-699).

The justification of the MISO equivalent method follows (7) and (3). The

inerse of a square, (assumed invertible) plant matrix is represented by
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MTill n"112 ... Inlrn

in 2 1  in 2 2  ... M2M

e

mInl Mmn2 ... mmm

where the mij are elements of the adjoint of P, divided by det(P). The ! x I MISO

equivalent plant is the matrix formed by inverting individual elements of P. 1 j.')

so that each tvij element of V satisfies vij = (mij) - 1 . The MISO equivalcat matrix is

given by

(M l11)- (M 12) - ' . (M 1,,n)-1Vi ' 2 ... C n
(rn2l)-' (M22)-I ... (rnm)-l V2 V2 ... V' M

(n.0 1
- 1  (rn.2) - 1  ... (Mmmrrn) - Im V r r,2 ... Vrnr

The matrix Pel(jw) is next partitioned into two parts; the first part D(jw.)

contains the diagonal elements of Pe 1 (jw) and the second part B(jw) contains the

balance of Pel(jw). That is

P-l(jw) = D(jw) + B(jw)

=[m 3J]

'2.40)

vii

Both sides of Equation (2.40) are next premultiplied by [I+ P(jw)G(jw)], to obtain

[I + P.(j,.)G(jw)]T(jw) = Pe(j ,)G(jw)F(jw) (2.41)
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Next, both sides of Equation (2.41) are premultiplied by Pe 1 (jw) (assumed invert-

ible), to obtain

[P-'(w ) + G(jw)JT(jw) = G(jw)F(jw) (2.42)

The equality Pe1(j,,') = D(jz) + B(jw) is now substituted into Equation (2.42) to

yield

[[D(jw) + B(ju)] + G(jw)]T(jw) = G(j,)F(jw) (2.43)

Multiply out the terms on the left side of the equation. Subtract B(jL')T(jw)

from both sides and then premultiply by (D(jw) + G(jw)]-1', which is invertible for

G(jL..) assumed to be diagonal. Thus

T(jw) = [D(jw) + G(jwc)]-'[G(jw)F(jw) - B(jw)T(jw)] (2.414)

This last equation is used to define the desired mapping. The proof of the fact

that designs based on MISO equivalent systems yield satisfactory MIMO designs

for the original plant is based on Schauder's fixed point theorem. The theorem is

invoked by defining a mapping Y(T) = [D + G]- (GF - BT where each member

of T is from an acceptable set of control ratios satisfying the design requirements

(3:699- 700).
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Individual elements of [D + G]-' are scalars multiplying rows of [GF - BT],

with

[di, + gi,-' 1[ + gi-'
Vii

Vii (2.45)

1 + viig

For a unit impulse forcing function, the yij elements of the mapping Y(T) take

on the iorm

di

yij - i -[gjjfjj - E bjjtij]
1 + d jg tik.

- 1 [gif2 j - E Vi1 11  (2.46)1 + viigii k;i

Equation (2.46) is also the control ratio of the th MISO system. The transfer

function given by

vii [gfJ] (2.47)

1 + V'igii

represents the "desired" i" output with respect to the desired j input while the

transfer function
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[ii v j t i] ( 2 .4 8 )
1 + viigii kji

relates the ith output to the jh "disturbance" input. The objective of the design is

then to have each loop track the desired input while minimizing the outputs due to

the disturbance inputs.

For plants that are basically noninteracting (BNIC) (i.e., highly diagonally

dominant), the magnitude of functions represented by Equation (2.48) is small rel-

ative to those represented by Equation (2.47). For such systems, QFT designs can

be pursued using diagonal F(jw) prefilters.

For disturbance-rejection problems, the yij responses are designed to be less

than some bound k; the boundary value with respect to the 'th input and the j"

output, kij, is then used to obtain the desired MIMO design by obtaining transfer

functions that satify ki2  ! fi-i -", U[E vtj ]. Solutions are obtained by reorga-functions~ ~ ~~~ th+ saiy O >/+,,.q,, i

nizing the inequality into a form that yields the loop transfer function, and then

following the QFT process given in (7).

It has been shown that a realistic definition of optimum for purposes of QFT

designs on LTI systems is the minimization of the high-frequency loop gain. It

has also been proven that this optimum lies on the composite boundary formed by

,(t eririning the maximum of two error sources: plant deviations due to disturbance

inputs and tracking errors. It has also been proven that the optimum is unique

(7:2-26). The optimal design is, however, not achievable. Instead, designs that yield

responses that are relatively close to the composite boundary without crossing it are

deerned acceptable, although they encompass some amount of overdesign.

The QFT process is simplified if the tij of P - '1 are MP. This is, however, not

a QFT requirement, since the vi, = (mi,) - 1 need not be stable for development of a

QFT design.
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However, since poles of the mij of P,-' appear as zeros of the vi, functions used

in the QFT design, the use of QFT in its simplest form requires that all poles of the

mO be in the LHP. Hence, it is important to consider the impact of not having all

LHP zeros on a QFT design before proceeding further.

2.8.1 The Impact of NMP vij on QFT Designs A vij transfer function of a

MISO equivalent plant is NM? if a zero of the transfer function lies in the RHP.

Systems with RHP zeros cause considerable difficulty in control designs; the zeros

have a marked influence on the nature of a system's time response. Whenever there

is a RIIP zero, the initial time response of the plant is negative, even though the

steady state value is positive. In addition, branches of the root loci that start at

open-loop poles must end at the zeros or oo. For any simple feedback system that

may be implemented, the closed-loop poles lie somewhere on the root locus between

a starting pole and either an ending zero or oo. The location of the closed-loop

poles depends on the selected value of feedback gain. As the selected value of gain

is increased, poles of the closed-loop system approach the jw- axis. If the gain is

selected large enough, closed-loop poles in the RHP are obtained, and the closed-loop

system becomes unstable.

For NMP vij, tolerances on both the phase and the magnitude of the tracking

response must be specified; for MP vij, only the magnitude of the tracking response

is specified. While it is considerably easier to work with MP systems, it is not

an absolute requirement in order to perform a QFT design (3:692). QFT designs

are typically pursued only for NIP systems, since it is for such systems that QFT

guarantees a solution meeting stated performance objectives for the entire set of

possible plants (assuming tolerances have not been too tightly specified).

The occurence of NMP behavior is a function of where actuators and sensors

are mounted. System zero locations are changed if the location of the actuator and

sensor devices is changed. Hence, the NMP nature of a vij can be addressed as a need
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to alter the systems's configuration by relocating control devices. However, once the

location of a set of actuator and sensor devices is decided upon, any NMP behavior

and inherent control design difficulties that result must be dealt with accordingly

(15:2-36).

2.8.2 Methods for Determining if a Matrix is NMP The current literature of-

fers a number of ways to determine if any vi2 are MP. Three methods are examined.

2.8.2.1 Routh's Stability Criterion Routh's criterion is a simp!e method

for determining the presence of RHP roots without actually solving for the roots.

The criterion states that the number of roots of the polynominal with positive real

parts is equal to the number of sign changes of array coefficients in the first column

(3:185-191).

While Routh's criterion is primarily used for determining system stability, it

can be used to determine if any vii have zeros in the RHP by applying the criterion

to the denominator polynomial of det(Pe(jw)). The application of Routh's criterion

is straightforward, when Q(jw) is known and P(jw) is fixed. However, if the plant

varies, and if Q(j;) is unknown, then the application of Routh's criterion becomes

increasingly difficult.

2.8.2.2 Evaluation Based on Step Response The author of (20) offers

a simple necessary and sufficient condition for a stable SISO plant to exhibit an

undershooting step response. Specifically, the author shows that undershoot occurs

if and only if the transfer function of a stable SISO plant has an odd number of real

RIIP zeros.

Consider a system with a strictly proper, real-rational transfer function p(jw).

Further, suppose the system is stable and has a steady state value not equal to zero.

Let y(t) denote the time response of the system in response to a step input. Then

for an assumed stable system, y(oo) is well-defined and equals p(jw) evaluated at
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w=0.

The author show that undershoot in stable systems in response to a step input

occurs only if the steady-state value has a sign opposite from that of its first nonzero

derivative. To define when undershoot occurs first requires defining the relative

order of a polynomial. The relative order of a transfer function, denoted as r, is the

difference between the orders of the numerator and denominator polynomials of the

function. In (20), a plant is shown to exhibit undershoot only if the product of the

rth derivative and the steady state value, yr(O) y(oo) is less than zero.

The evaluation method described in (20) can be used to evaluate the vii, but

the method is more involved than evaluations using other methods. As such, it is

unlikely that this method can be incorporated into design processes involving the

selection of a suitable Q(jw).

2.8.2.3 Fvaluation of a Composite Matrix The authors of (14) offer a

necessary and sufficient condition for the stability of a polynomial matrix. Changes

in the presentation as made by the authors of (14) are made herein to make the

material suitable to this section.

Define P,(jw) as that polynomial matrix resulting from the product of Pe(jw)

and the characteristic Equation (least common denominator polynomial) of Pe(jw).

Then, for any nonsingular I x 1 polynomial matrix Pe(jw), a diagonal matrix D(jw)

can always bnt determined, such that for rmax = maximum power of w in the nu-

merator terms of Pe(jw),

P'(jw) = D(jw)[jx,(jw)1- + Ar-,.. jW)r-axl + ... AI(jw) + A0 ] (2.49)
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where the maximum power of the polynomials of any 1th column of P'(jw) is along

the ith diagonal of D(jw). It follows that

det(P'(jw)) = det(D(jw)[Ij(j.,)r ma + Ax .._ (JW)rmG*- + ... Ai(jw) + A0]) (2.50)

Now, an equivalent expression for the braketed term of the previous equation

is given by

Oxi ... 01.1 -A 0

det((jw)Ixt - L) = IXI ... 0 -A, (2.51)

Oxl ... lx -Ar...-i

Hence, it is concluded that

det(P'(jw)) = det(D(jw))det((jw)Itxi - L) (2.52)

and for ri, equal to the smallest power of w in D(jw), that eigenvalues of Pe(jw)

are given by the eigenvalues of L after excluding rm,, - rmi, zero eigenvalues added

by the formation of the L matrix. The determination of whether the vij are MP can

be made, therefore, by determining if the remaining eigenvalues of L lie in the LHP.

For example, for the following P'(jw) polynomial matrix
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P'(jo)= ( - O24jw+41 jw+2

1 jw±+2)

Pe(jw) is rewritten as P'e(jw) = D(jw) [[Ii, + Ai(jw)- + Ao(jw) - 2 ] to yield

=1(( * ) + ( c) + (jW) - 2
( (jw))(( 0 1 1 2 0 0

So that for

0 0 -4 -2

0 2X2 -Ao 00 0 0

1212 -A, 1 0 -4 -1

0 1 -1 --2

the det((jw)I - L) yields eigenvalues of 0, -1, -2, and - 3. Excluding rma - rmin =

2 - 1 zero eigenvalues (i.e., excluding the only zero eigenvalue), we determine that

eigenvalues of det(P' (jw)) are -1, -2, and -3 and hence the vij are MP.

Again, the method appears useful in screening out inappropriate selections of

Q(jw), but it appears unlikely that the method can be incorporated into the selection

process of Q(jw).

To conclude, methods are available for determining if the (mij) of Pe1(jw) are

MP ~by',-,a1Uang ," at ekj-)). ,, .', i,...e the available mt.lhods appear

to have applicability only after the selection of the Q(jw) compensator is made, the

methods can be expected to see little use. If the evaluation is done after the selection

of the Q(jL,;) matrix, numerical evaluations of det(Pe(jw)) are simpler and quicker.
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2.9 Selection of Q(jw) for MIMO QFT Designs

In this section, QFT design requirements are examined to determine optimal

Q(j ). As the intent of this study is to concentrate on the selection of a Q(jw) that

minimizes the difference between the two sides of Equation (1.1), it is imperative

that P(jw) be first fixed ( P(jw) E 7'(jw)). Hence, for purposes of this study the

objective is established by specifying that Q(jw) is to minimize Equation (1.1) with

respect to the healthy plant.

The first criterion for Q(jw) is that the product of P(jw) and Q(jw) be a

square matrix. This constraint is stated first since it allows us to proceed under the

asumption that P(jw)Q(jw) is a square matrix. Obviously, for any I x m matrix

P(jw), we can always find an m x I Q(jw) that yields a square 1 x I Pe(jw).

Before proceeding to the second criterion, some matrix equivalents are estab-

lished. While we proceed by use of an example, similar statements can be made for

any nonsquare P(jw) and Q(jw) matrices whose product is square by applying the

Binet-Cauchy formula (7:5-19).

Consider a 2 x 3 matrix of transfer function elements P(jw), such that

P(jw)= (P11 P12 P13

P21 P22 P23

and a generalized compensator Q(jw), such that

qii q12
Q(j,) = q2i q22

q31 q32

The product P(jw)Q(jw) is given by
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P(jw)Q(jj) = (p llq11 + P12q21 + p13q31 Pilq12 + P12q22 + P13q32 (2.53)
P21qll + P22q21 + P23q31 P2lqI2 + P22q22 + P23q32

The right hand side of Equation (2.53) is rewritten to yield

9

ZPQi = PIQI + P2Q2 + P3Q3 + P4Q4 + PQ 5i=1

+P 6Q6 + P7Q 7 + P8Q8 + P9Q9  (2.54)

Note that Equation (2.54) cannot be set equal to the right hand side of Equation

(2.53) without first defining an equivalence relationship. This is done later. For now,

continue by noting that the Pi and Q, of Equation (2.54) are given by

q111 qI 12  /
PQP = P(s) q 2 2, q1 q 12  (2.55)P21 P22 qI21 q1 22

q211 q2 12  (Iq
P2Q2 = P(s) 0 0 =q2 q212  (2.56)

(P21 P23 q231 q232
q231 q232
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0 0

P3Q3qP(S)q J 3 ( P12 P13 (q3 21 q32 2  (2.57)
P22 P23 q3 3 1 q332

q331 q332

q411  0 (0 q512

P4Q4 =P(S) 0 q421 P 5  P(s ) q521  0

q431 q432  q531 q532 J

(q611 q612  (q711 q712

P6Q6 =P(S) 0 q612  P7 7 = P(S) q7, 1  0

q6 3. 0 0 q732

(q811  0 0 q912
PsQ 8  P(s) q8 21 qs22  P9 Q9 = P(s) q921 q922

0 qs 32  q931  0

Note that only the first three products can actually be formed using a square

P,. The 2 x 2 P, for i E (4, 5, 6, 7, 8, 9) do not truly exist. Let the 3 x 2 Qj matrices

be denoted as Q'. Next observe that each of the Q' for i E (4, 5, 6, 7, 8, 9) is just a

linear combination of the Q' for i E (1,2,3). As such, only the first three elements

of equation (2.55) are needed to span the space of achievable Q(juw). In general

for an I x rn P(jw) and an m x 1 Q(jw), the Binet-Cauchy theorem yields m2 PQi

combinations of which only m are needed to span the space of all possible P(jw)Q(jw)

products.

That only the first three PQ, for i E (1,2,3), are needed to span the space of

possible P(jw)Q(jw) is verified by forming the sum of the PQ, of equations (2.55)
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through (2.57). The sum results in Equation (2.54) with the qij elements of Equation

(2.54) given by

q, = [q,, + q2111

q12 = [q,12 + q1 ]

q2 = [q,21 +q3 2 1]

q22 = [q,22 +q3 22]

q31 (q23 1 + q3 3,]

q32 = (q23 2 + q332 ] (2.58)

As such, the Pi for i E (4, 5, 6, 7, 8, 9) are eliminated from further consideration.

The purpose in breaking up the product is to define a set of PQi matrices such

that any Pe(jw) = P(jw)Q(jw) can be formed as a linear combination of several PQ,

matrices. The objective is to define selection criteria for Q(jw) on the on the basis

of the square P2Q, matrices. A desirable Q(jw) is then formed using the desirable

Q,. Note that in seeking to achieve this objective that Equation (2.55) potentially

yields m 2 * Pe(jw), since Equation (2.55) contains M 2 versions of Pe(jw). If only the

P, for i E (1,2,3) are retained, then the relationship between equations (2.54) and

(2.55) is given by

in
P-jW)Q jw) P, Q , n = 3 (2.59)

Note however, that the value of n in Equation (2.59) is reduced if additional

P, are eliminated. For example, if P-'2 were not invertible or failed to satisfy the
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remaining QFT criteria, then P2 would be eliminated from further consideration

and the value of n in Equation (2.59) reduced to n = 2.

The second criterion is that the product P(jw)Q(jw) = Pe(jw) be non-singular

over the entire range of plant uncertainties. A sufficient condition for implementing

this requirement is to require that each of the P1Qj com'inations be nonsingular.

The impact of a P, matrix for i E (1,2,3) whose determinant det(Pi) does go

to zero for certain plant parameter variations is next determined. Note that this

criterion is applied to functions in the Pi matrices and not to evaluations of the

functions at certain frequencies.

Assume a P,, i G (1,2,3) is singular. If P is singular, then for some plant in

the set of possible plants, det(Pi) = 0. As each Pi is square, the product rule for

determinants applies. Hence, for P1Q, combinations where i E (1,2,3),

detIP,Q) = det(P,)dct(Qj) (2.60)

Based on the above result, we conclude that if dct(P), i E (1,2,3) does go to

zero. then no Qj eliminates the zero. Conversely, it also follows that if these three P,

are nonsingular, then any nonsingular Qt ensures that the product PQi satisfies the

second criterion. To proceed, it must be assumed that at least one Pi of Equation

(2.59) is invertible.

The third criterion noted in Chapter I is that the product P(jw)Q(jw ) satisfy

a diagonal dominance condition as w --+ oc over the entire range of plant parameter

variations. This condition ensures that the diagonal transfer functions dominate the

plant's response at high frequencies. A more restrictive version of this requirement is

lRsenbrock's dominance condition that requires that the diagonal traiisfer functions

d,,rninrate the plant's response at all frequencies.
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Note that diagonal dominance in QFT differs from that usually referred to

in linear algebra courses. In this case, diagonal dominance is that characteristic of

a matrix that is observed when the eigenvalues of the matrix satisfy Gershgorin's

"'circle theorem" (17:386-387).

The application of the criterion to Pe(jw) or to the Pi I E (1,2,3) is readily

done by evaluating transfer function elements of the matrices over a desired frequency

range and the- applying magnitude conditions detailed in (7) and (3). For 2 x 2

mat rices, the diagonal dominance condition requires that

lP ' , ,P -e22 1 >! l 'P , 2 -il ( 2 .G 1 )

For matrices of any higher dimension, (7) provides the necessary information. It

follows that if any PQ, that is diagonally dominant is added to any other PjQ, that

is also diagonally dominant, then the resulting sum is also diagonally dominant.

Once ;t, Q, matrix is selected, then the matrix product PQj is evaluated over

come frequency range to determine the extent to which each P2 Qj combination is

diagonally dominant. As such, we are able to select for QFT design purposes, the

diagonally dominant PQ.

Ideally, the selection process for Q(jw) yields a Pe(jw) that satisfies Rosen-

brock's diagonal dominance condition. In such cases, design efforts are reduced and

the resultant design is simplified. However, selecting Q(jw) to primarily accomplish

this objective entails abandoning efforts to select Q(jw) on the basis of a prespecified

P,J(P.) matrix.

The fourth criterion requires that roots of det(Pe(jw)) lie in the LHP (i.e., that

the (m,)-l = ',j be MP, where the m0i are elements of P;'(jw)). This criterion

cannot be applied when the plant transfer matrix is nonsquare. However, in the form
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of a set of squared-down versions PQi, the criterion is readily applied. As such, the

conmbinat ions can e eva, uated to weed out undesirable choices of Qj.

A summary point about the four QFT criterion is now made. Of the four

criteria, three are GO-NO GO type of evaluations. Only one of the four, the third

criterion concert ing diagonal dominance, may be said to be qualitative in nature.

As such, it is believed that the selection process should concentrate on the third

criterion, reverting back to the three remaining criteria only to the extent necessary

to ,nsure compliance.

Once desirable Q, are determined, a single Q(jw) is then formed as the weighted

suin of the expanded Q'. Weighting matrices IV whose sum equals llxl are used for

this purpose. The IU, are restricted to the use of scalar values in order to preclude

further changes in the NIP characteristics of the equivalent plant. The QFT design

prucess is then entered using a single Q(jw).

The fact that choosing the Wa to satisfy E T1' = 11xi yields Pe(j& ) is readiiy

demonst rated for the case of invertible P, by the following set of equalities. The Q,
sat isfing Equation (1.1) are given by Q, pi-Pe since the P, must be invertible.

P(Q 1 ""' + o'2W2 + Q/tv) PQ' 'tw + PQW2' + PQ3'1V

= P1 P1
1IP, tt~ + P2 P 'PIV P, P3  "-j3

= P,"(l + "72 + 'V3)

Alternately Q:T designs can be determined for each of the I,(Q, for retained P,

;iid tI he individual designs iniplernetited in parallel. With the QFT process compl(cted

,i-iii three versions of I),Q,, design impleneritation occur.s as shown in Figure 2.3.
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Figuure 2.8. The QFT Compensated Plant with W Wkeighting Matrices
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The IWt weightings are then selected to achieve an overall best compensating system.

It is anticipated that if tradeoffs are necessary in the selection of the W1 , that the

tradeoffs are more visible in a post-QFT environment.

The process of H-2 or H -norm minimization is accomplished in the absence of

other design criteria for establishing tradeoffs between the Vi. As each Pi retained

to this point is assumed invertible, it follows that the Q, are already H2 and II,,-

norm minimal with respect to the healthy plant. As such, the use of H2 or H,-norm

minimization is used to address the entire set of possible plants. As there is no

mathematical formulation available for this purpose, the process of minimizing the

112 or II,-norm over the set of all Pe(jW) e P'e(jw) is done by trial and error

selections of the It,. However, the process is applicable only if transfer function

elements of the retained P are stable for all plant parameter variations.

Before concluding this section, the idea of abandoning a prespecified equivalent

plant and instead seeking to select Q(jw,) to make the product P(jw?)Q(j,) satisfy

Rosenbrock's diagonal dominance condition is examined. The examination is con-

(hicted by examining the impact of two different Q(jwJ) on the diagonal dominance

characteristics of P(jc )Q(j,) for P, E (1,2, 3).

First, a di-gonal Qj is assumed. For explanation simplicity, it is assumed,

without loss of generality, that the Pi being used is P2. The product of P2 and an

assulrned diagonal Q2 is given by

P2 Q2  PI ) 1 q1 (2.62)P21 P2 0 q2,)

('arrying out the product and applying the diagonal dominance condition

F')Ilation (2.57), the following is obtained.
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J(pllq211 )(p22q2I2 )1 I(p,2q2,,)(p2,q2,,)I

Jq2I1 q2221 IplIp221 iq211q2221 iP12P211

and it is concluded that a diagonal Qi provides frequency sensitive scaling of each side

of the inequality, but does nothing to alter the diagonal dominance characteristics

of the Pi matrix.

Now, a Q whose numerator terms are the conjugates of numerators of elements

of Pi and whose common denominator terms are the same common denominator

terms of Pi is next investigated. To express both the Pi and the Qi elements in a

common frame, let denp represent the common denominator term of Pi and denq the

common denominator terms of Qj. Further let nij represent the numerator terms of

Pi. Again. for explanation simplicity, it is assumed that the Pi being used is P2.

P22-( r 11 /denp n,2/denp ( IjT/den, -T/denq (.3

n2l/denp n22/denp ) -7H/dcnq T2-/denq )

Carrying out the product and applying the diagonal dominance condition, the

following is obtained.

T'IIT11111 22 --22 + n,2-i 2in2 l 121 In,2nlp 2 1n22 + nil-l2n 22n211 (2.64)

where the common denominator terms have been removed since they only alter the
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scaling of the inequality. But as the right hand side of the inequality is the sum of

a function and its complex congugate, the right hand side satisfies

12 * Re([ni2iT,,fn 2 i-l ,,,, 2i + n,,12-Tl, 2 ,-T,2 (2.65)

both sides of the inequality are equivalently expressed by

IIni 1n22 12 + In 2 n2 12  1 2 * VIn12 In,12 In 12 I n2 1n222 1 (2.66)

Removing the ext i'ss outer absolute value bars and squaring both sides of the

previous inequality, the following results

I ni 1 n22 14 + 2 * Ini 1 n22n12n21 12 + 1n12n21 14 > 2 * In12niin2in22I12  (2.67)

which implies that

I1n1 n2214 + In2n2, 14 > 0 (2.68)

and it is concluded that this Q, guarantees that Rosenbrock's diagonal dominance

corndition is at least satisfied for the healthy plant. Hence, we are able to define

conditions for ineffective and effective Qj for improving the diagonal dominance of

a 1-,. [owever, the application of the latter Qj entails some modification since a
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selection based on the healthy plant may drive the equivalent plant matrices Pe(jw) E

Pe(j') to be NMP.

2.10 Summary

The following summarizes material in this chapter.

I. Elements needed to determine the singular value decomposition of a matrix of

transfer functions are obtainable. In general, however, the transfer function

elements are not real-rational functions in jw and their use in determining

solutions to the model-matching problem is limited.

2. The application of QFT to MIMO plants relies on defining a multiple-input,

single-output (MISO) equivalence mapping. QFT constraints stem from this

mapping.

3. Methods are available for determining if the (rmij) of P,-(jw) are MP for al

plant parameter variations after a Q(jw) has been selected. The most appro-

priate method, however, remains the numerical evaluation of det(Pe(jW)) for

different plants Pe(jw) E Pe(jw). None of the methods available for determin-

ing if the (mij) of Pel(jw) are MP is readily adaptable to the forming of a

mathematical relationship between the MP criterion of QFT and a desire to

minimize either the H2 or H -norm of the set of all projectied plants about

some nominal plant.

4. Of the four constraints, only diagonal dominance may be said to be qualitative

in nature. As such, it is believed that the selection process should concentrate

on satisfying diagonal dominance over the largest bandwidth possible (with

the objective of achieving Rosenbrock's diagonal dominance condition), and

reverting back to the three remaining criteria only to the extent necessary

to ensure compliance. To do so, however, requires abandoning a prespecified

P,(jW).
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5. Breaking up the product of P(jw)Q(jw) to define a set of PiQi matrices sat-

isfying Pe(jw) = P(jw)Q(jw) provides a number of insights. QFT designs

can be accomplished on a single Q(jw) after summing the nonsquare Q or on

individual PQ, and then implementing the results in parallel.

6. As only invertible Pi are retained for QFT design, the Qi are determined using

P-'. As such, each Qi is H2 and Ho-norm minimal for the healthy plant. If

the design objective is to minimize the H2 or Ho-norm over the entire set of

possible plants, then it is suggested that the process of minimizing the norm be

done using a trial and error approach. This process, however, effectively rede-

fines the plant used to obtain each Qi from the healthy plant to that nominal

plant which minimizes deviations from nominal for the set of possible plants

with respect to the selected norm criteria. Since no mathematical formulation

is available for integrating the norm-minimization requirement with a sum-

mation of PiQi equivalent plants, either a trial and error aproach in selecting

Q(jw) is used or each individual Qi of PiQi is selected to norm-minimize the

PiQi and then the resultant designs implemented in parallel. Finally, to apply

norm-minimization criteria, it is noted that transfer function element of P(jw)

must be stable for all plant parameter variations.

7. To define the best overall compensating system, weighting matrices 1,i are

introduced. Elements of the Wi are chosen to satisfy F_ Wi = I and either

overall design requirements for closed-loop plant performance or to minimize

the norm-criteria for a sum of PiQi.

8. The use of a diagonal Qi with an invertible P, is ineffective. Diagonal Qi do

nothing to alter the diagonal dominance characteristics of a Pi matrix.

9. The use of a Qi whose numerator terms are the conjugates of numerators of

elements of P, guarantees that Rosenbrock's diagonal dominance condition is

satisfied for the healthy plant. The method, however, requires modification to

guard against driving equivalent plant matrices Pe(jw) E Ple(jw) to be NMP.
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III. Flight Controller Design

3.1 IExamination of Plant Characteristics

In this chapter, transfer functions are expressed using Laplace transforms. Con-

ditions at the beginning of Chapter II are satisfied; the frequency domain represen-

tation of the transfer functions is given by substituting jw for s.

The aircraft plant selected for compensation is that of the AFTI/F16 in level

flight at 0.9 Mach and at an altitude of 20,000 feet. The objective of the compen-

sation is to maintain effective plant roll rate and yaw rate response despite limited

control surface failures. The linearized plant model is described by a state space

equation in the following form

x = Ax + Bu (3.1)

y = Cx + Du (3.2)

where the positive direction of roll, yaw, and sideslip is as shown in Figure 3-1. A

description of the state space equation variables follows.

6 is the aircraft roll angle in degrees

,3 is the aircraft sideslip angle in degrees

p is the aircraft rell rate in degrees per second

r is the aircraft yaw rate in degrees per second

, is the aileron deflection in degrees

6r is the rudder deflection in degrees

6ht is the horizontal tail deflection in degrees

The matrices of equations 3.1 and 3.2 follow.
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6at

U

bht

0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

0.0345 -0.3436 0.0326 -0.9976 -0.0014 0.0373 0.0266

0.0000 -55.2526 -2.8000 0.1457 -51.0500 10.3950 -50.7290

A = 0.0000 7.2370 -0.0232 -0.3625 -1.2501 -5.8080 -5.1371

0.0000 0.0000 0.0000 0.0000 -20.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 -20.000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -20.0000

0.0000 0.0000 0.0000

0.0000 0.0000 0.0000

0.0000 0.0000 0.0000

B O.oooo o.oooo 0.0000

20.0000 0.0000 0.0000

0.0000 20.0000 0.00000

0.0000 0.0000 20.0000
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( 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 )

D-( 0.0000 0.0000 0.0000)

0.0000 0.0000 0.0000

The matrix of transfer functions is given by P = C(sI - A)- 1 B + D. The

transfer function matrix is determined to be of the form

p= pil P12 P13 (3.3)

P21 P22 P23 )

Letting denp be the characteristic equation of P, the elements of P are

denp = (s + 3.9083 ± j2.9614)(s + .0272)(s + 2.6973)(s + 20)

p, = (-1021)(s)(s + .3541 ±j2.9273)/den

P12 = (207.91)(s)(s - 4.6436)(s + 5.0717)/den

P13 = (-1014.58)(s)(s + .3749 + j3.5777)/den

P21 = (-25)(s + .5461 j3.2533)(s + 1.1119)/den

P22 (-116.17 8)(s + .3284 ± j.6928)(s + 2.4822)/den

P23 (-102.742)(s + .6699 ± jl.5474)(s + 1.5372)/den
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For the nominal (healthy) plant, all eigenvalues are in the closed LHP and the

system is stable.

When plant variations occur, for example as a result of control surface failures,

the plant has the following form. In this alternate form, ki represents the effectiveness

of the aileron control surfaces 5a, k2 the effectiveness of the rudder control surface

6,, and k3 the effectiveness of the horizontal tail control surfaces 6 ht. The set of all

possible plants is represented by P where for each ki, i E (1,2,3), ki G [.8, 1].

( (k )pll (k2)P12  (k3)P13) (3.4)

(kl)p 21 (k2)P22 (k3)P23 )

The squared down versions of P are next examined for diagonal dominance.

Only the Pi for i E (1, 2, 3) need be examined. This is done to establish the extent to

which the three Pi are diagonally dominant. The examination is done as a function of

frequency as plant variations occur. The condition for diagonal dominance, Equation

2.62), applies.

Figures 3.1 through 3.3 result. The solid line plots represent the extent of

diagonal dominance for the healthy Pi. A positive result indicates that the Pi is

diagonally dominant at the indicated frequency while a negative result implies the

opposite characteristic. The dotted plot of each figure represents the minimal amount

of dominance present as the k, vary between 1 and .8 in .1 step increments.

For this study, few points are needed to determine diagonal dominance for the

given plant because the set of all possible plants described by Equation (3.4) satisfies

(IF f, (kIl k) (kj)(k 2 )det Pit PI)

( k, )P2i (k,)p, -P2. 7)2
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for any i #: j and i, j E (1,2, 3). In general, a much more complete evaluation of

the determinant for the set of all possible plants is required. Note that it is the

requirement that diagonal dominance be satisfied as w -, Cc that drives the choice

of P, and not the relative area above the line denoting where the dct(P,) goes to

zero.

Based on Figures 3.1 through 3.3, it is concluded that P and P2 are diagonally

dominant while P3 is not. However, the transpose of P3 is diagonally dominant and

Pf is therefore retained for use in subsequent design steps.

In comparing the three plots, it is noted that the points at which all three

plots go to zero occur at the same frequencies. Hence, any linear combination of the

three plots retains the same frequency points at which jpi,,pi22[ = lpt1 2P! for any

P,. This is an important point relative to attempts to select Q(jw) for purposes of

ensuring that Rosenbcock's diagonal dominance condition is satisfied over the set of

all possible plants. The current situatior indicates that selecting a Qj that satisfies

Equation (2.63) results is a PiQi that still retains the same frequency points at which

]Pill 1i221 -- PiK 2PA2 1.

An examination of tl.e determinants of each of these three Pi is next conducted.

The denominator polynomials den,, den 2, and den3 of the deteiminants of P1, T 2,

and P 3 respectively are

,1, =123,15(s)(s + .0272)(s + .2901)(s + 2.6973)(s + .3908 ±j2.9614)(s + 20)'

'172 = 79.535(s)(s + .0272)(s + .2805)(s + 2.6973)(s + .3908 ± j2.9614)(s + 20))

d, =-t 139233(s)(.s + .0272)(s + .2932)(s + 2.6973)(s + .3908 ± j2.9614)(s + 20) 4

AS each of the denominator polynomials has only LIIP roots, inverting indi-
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vidual elements of the P - ' yields transfer functions that are MP. For the particular

plant being used in this study, the denominator polynomials of the determinants of

Pi. P 2. and P, do not change as plant variations occur. Hence, if the healthy plant

P, are NIP, so are the 'Pi, for i E (1,2,3).

31. 2 SIection of Equivalent Plant Pe

From (4:23), the roll mode time constant is to satisfy T, < 1.0sec. From

(1:22), a requirement that > > 1 rad/sec is also obtained. These requirements are

combined with the maximum allowable oscillation requirements of (4:78) to obtain

desirable functions for the equivalent plant P.

In addition to the performance requirements, the difference in the orders of

transfer functions in Pe are selected to coincide with the relative order of transfer

functions in P. This is done to ensure that Qi transfer functions are strictly proper.

The following transfer function is selected for tracking command inputs. The

function has a damping ratio (d = 0.6 and natural frequency w,, = 7.5 rad/sec for

the dominant complex pair poles. Hence, p, is given by

pc, = (562.5)/[(s + 10)(s 2 + 9s + 56.25)] (3.5)

The following transfer function is selected for rejecting undesirable inputs. The

rejection transfer function is selected to satisfy diagonal dominance requirements of

the R. while retaining the denominator polynomial of p,,,.

(S + .001)1[(6 + 1O) 2(s2 + 9s + 56.25)] (3.6)
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Based on the above selections for Pell and Pe12, the desired equivalent plant is

formed as

SP Pel ( ioo

Pe1  Pell

(3.7)

Table 3.1. Figures of Merit for P,

Transfer Function Peak Value Final Value tp t'

Pel 1.06142 1.00000 0.665 0.894

Pe 2  0.118E-07 0.267E-11 0.211 2.290

Figures of merit for Pc are as presented in Table 3.1. The settling time t, and the

time to peak tp are given in seconds. Settling times given are for when the time

response is within two percent of its final value.

The time responses for p, 1 and P1 2 to a step input are provided as Figures 3.4

and :3.5.

In preparation for obtaining a QFT design, the upper and lower tracking

boundary functions are now specified. The transfer functions cbsen for the up-

per tracking function Tu(s) and the lower transfer functior establish a region

of acceptable responses that satisfy design criteria. In addition, to satisfy QFT de-

sign steps, the relative order of Tu(s) must differ from the relat.i,, ,rder of TL(s) by

at least 2.

The following function is es ablished as the tipper tracking boundary functiohL

1,, (.s).
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TL(s) = 4(s + 16)/ [S2 + 10.4s + 641 = 4(s + 16)/[s + 5.2 ± J6.0795]

The following function is established as the lower tracking boundary function

TL (S).

TL(S) = 6400/[s 4 + 36s 3 + 484s 2 + 2880s + 6400] = 6400/1[(s + 8)2(s + 10)2 ]

The frequency and step input time responses of the upper and lower tracking

functions are provided as Figures 3.6 and 3.7. The central plot in each of these two

figures is that of the desirable equivalent plant P,,j.

3.3 Obtaining and Evaluating the 2 x 2 Q, Compensators

The Qi compensators are next obtained using the healthy 2 x 2 versions of

each P for i E (1,2,3). For the given plant, each of the P is invertible so that

Q, = Pi- 'P. Note however,

As acceptable Qj were not able to be determined, this section continues with a

description of steps that were to be taken. The next section is then used to describe

efforts that were made to obtain the Qj.

Assuming the Qj are obtained, the Q compensators are next determined; each

Q'i is of the form

qII q12

Qi q21 q22 (3.8)

q31 q32

Having determined the Q' compensators, the product pairs PQ' for i C (1, 2,3)

are formed to verify achievement of P, for each cascaded pair. Alternately, verifica-
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tion that acceptable Q, are achieved is available by obtaining the time responses of

the PQ, pairs to step inputs and comparing the step responses to those of Pe.

With the Q' in hand, for design implementation using a single Q(jw) matrix,

the selection of the Wi weighting matrices is accomplished and Q(jw) is formed as

the weighted sum of the Q'. The 1W, are selected to either satisfy design requirements

or to minimize the H2 or H_-norm over the set of all possible plants. With the It"

weightings determined, the QFT design is then accomplished.

3.4 On Obtaining the Q, Cornpensators

This section describes efforts made to obtain the Qt compensators appropriate

to converting the healthy plant P1. P 2, and P3 into P,.

In (5) the following operation is provided. For matrices of transfer functions

corresponding to the state space realization (.4, B, C, D), define [.4, B, C, D] = C

[i - A]- ' * B + D = P. Then P- 1 is given by

[A,B,C,D]-' = [A- BD-'C, BD-',-D- 1CD-'] (3.9)

Unfortunately, the above equation applies only where D-' exists. As D for a

matrix of strictly proper transfer functions is zero, the equation is not appropriate

for obtaining Q, by first determining Pi- 1.

Because of the unavailability of a direct solution using state space realizations,

a solution method based on determining the ratio of the adjoint of Pi to dct(P,) is

attempted (17:231-233). The method is applied to determine each Qj as the product

of P-' and P,. The necessary polynomial product manipulations are carried out on

.M.\TRIX,. Results of the manipulations yield what appeared to be acceptable

i nverses.
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The Qi thus determined are then tested. Results indicate that the Qi do not

result in MP [PQ,]-1 . The inherent difficulty seems to lie in numerical inaccuracies.

While some of the inaccuracies are attributable to having to round off elements of

the qi3, other inaccuracies are determined to be related to conversions between state

space and transfer functions of the realizations in MATRIX,.

For example, using the "eig" command, the eigenvalues of the A matrix given

in this chapter are determined to be the values indicated in column 1 of the following

table. Obtaining first the transfer function form of the state space realization, and

then obtaining the roots of the denominator polynomial (the characteristic function).

the roots are as indicated in column 2. Hence, even prior to manipulating the poly-

nomials to form the adjoint and determinant needed to obtain the Pi- 1., a noticeable

error is present. The size of the error is significant in that its size is the same as the

accuracy of the linearized plant model. It is believed that the primary reason for the

failure of this method lies in such numerical precision problems.

Table 3.2. Characteristic Eigenvalues of P

Eigenvalues of A Roots of characteristic

-0.0272 - jO.0000 -0.0272 + jO.0000

-2.6973 + jO.0000 -2.6973 - jO.0000

-0.3908 - j2.9614 -0.3908 + j2.9614

-0.3908 + j2.9614 -0.3908 - j2.9614

-20.0000 + jO.0000 -19.9998 - jO.0000

-20.0000 + j0.0000 -20 0001 + jO.0001

-20.0000 + jO.0000 -20.0001 - j0.0001

The extent of the impact of the inaccuracies is provided in the following table.

All three columns of the table are roots of the nunerator polynomial of q1 ,, whose

largest term is of the order I x 101". Column entries have been rounded to four
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significant digits. Column I are roots determined when numerical precision is kept

at 16 significant digits. Column 2 are roots achieved when all numerators terms with

magnitude less than 1 x 10- 6 are rounded to zero at several steps in the computation

process. Column 3 are roots achieved when all numerator t~rms with magnitude

less than 1 x 10- 3 are rounded to zero. The wide variability in numerator roots

determined by using this second method make the appropriateness of the mettkod

questionable in this case.

The third method attempted is to solve for the Qj dire.ctly by forming an

equation of the form Ax = 0 and then determining the solution space of xr. This

is the method used in (12) to determine the Qj matrices. To accomplish this an A

matrix having more rows than columns is needed so that x is known to lie in the

nullspace of A (17:68). To this end, the qj. elements of Qj are defined as polynomials

of the form

an~sn -+ an-1s
n -1 +r ... ao

qj - b,s' + b ,s, 1 - ... o (3.10)

under the assumption that the a, and bi are real constants. Both sides of the above

e(Iliation are next multiplied by the denomip-itor poiynomid. The resultant left hand

term is then substracted from both sides ,) yield

[a.s ' + an, -s 1  -+- ... aJ- qt[b,,sw + b iw,- I l + ... bJ= 0 (:3..11)

Evaluating the above equality at a miniilnum of n + w, + 2 frequencies, q >

u + ?v + 2, the resultant set of linear equations is written in matrix form a.s follows.

3-19



Table 3.3. Factors of ql,,

No Roundoff Made 10- 6 Roundoff 110 - Roundoff

0 0 0

+6.154D-9, -2.697 +53.89, -2.697 +84.93, -2.697

-144.7, -.2901 -9.431, -.2901 -8.965, -.2901

-.02719, -25.01 -.02719, -2.475 -.02719, -2.475

-5.072, +4.642

-.3908 + j2.961 -.3908 + j2.961 -.3908 + j2.961

-.3908 - j2.961 -.3908 - j2.961 -.3908 - j2.961

-4.500 + j6 .000 -4.4q9 + j6.000 -4.500 + j6.000

-4.500 - j6.000 -4.499 - j6.000 -4.500 - j6.000

-9.996 + j.07495 -10.67 + j1.371 -9.753 + j2.099

-9.996 - j.07495 -10.67 - jl.371 -9.753 - j2.099

-14.31 + j2.382 -12.5d + j5.381 -11.08 + j6.536

-14.31 - j2.382 -12.59 - j5.381 -11.08 - j6.536

-i7.33 + j7.388 -14.29 + j11.72 -12.75 + j15.06

-17.33 - j7.388 -14.29 - j11.72 -12.75 -,-j15.06

-32.58 + j17.85 -32.92 + j.6940 -.2920 + j.3940

-32.58 - j17.85 -32.92 - j.6940 -.2920 - j.6940

+56.77 + j26.34 -13.69 + j43.52 -5.664 + J46.31

+56.77 - j263.4 -13.69 - j43.52 -5.664 - J46.31

4 18.77 + j64.20 +20.74 + j43.52

+18.77 - J64.20 +20.74 - J43.52

-25.04 + j67.71

-25.04 - j67.71

3-20



a,

/ 41 i(JLw1  ) n w qij(jwi )[1 jw 1  (jw )2  . ] f
Sj' 2 (jL 2 )2 ... (JL,2)" qij(jLw2)[1 JLw 2 (jW 2 . (j2 . 2) ]  a

\1 j,', ( ,)2 . (j~q)fl] qjj(jwq)[I j~zq (j ,q)2  
..• (jwq) ] J

b,

To obtain the q:j(Jwj) requires evaluating the product P+(j-)Pe(j&) at fre-

quency ,, and extracting the ij elemeit rcsulting from the evaluation.

To obtain a set of vectors spanning the nullspace of A, the modified Hermite

normal form of A is obtained. The "rref" command :n MATRIX, is used for this

puirpose. With the 4 matrix in Hermite noraml form, only those columns whose

diagonal element is 0 span the nullspace of .4. A " -1 " is inserted at the diagonal

position to yield the spanni'.g vector.

In t,,nmg a routine based on this third inethod, only those spanning vectors

whose coefficients are real can be used (i.e., the solutions must satisfy the assumption

that the constants of eqiiation 3. 10 are real). Due to numerical imprecision, spanning

vectors have typically been considered real if the. imaginary components were on

the order of 1 0 i" or less. However, in running the routine, imaginary components

were always obtained with magnitudes well above the typical cut-off (on the oider

of 0- 1 or 102). As uch, all solutions obtained by the above method were deemed

uinacceptable. The only explanation that is offered to explain failure of this algorithm

is thai the product P- 1 (jW)Pe(jw) was ill-conditioned in the frequency region of

iiit ernst.

A solu~ion using a curve-fitting approximatio-i to the qij(juwi) points dctermined

,,hove was not attempted due to time con iderations. C-irve fitting approximation1s
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woUld require not only iteratively fitting the curve, but also establishing the ac-

ceptability of successive approximations using the QFT criterion on the product

P(j&)Q(j, ).

Finally, a solution based on determining the P - ' by first augmenting the nl,-

merator terms of transfer function elements of P. with sufficient zeros at infinitv

(e.g.. bv multiplying each pi, by (s + 106)2) to make the D matrices of each P, in-

vertible so that Equation (3.9) ,an be applied was also not attempted due to time

considerations.
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IV. Conclusions and Recommendations

This thesis focused on the selection of a frequency sensitive weighting matrix

Q(j&') to convert an original non-square I x m plant transfer matrix P(j ') into a

square plant matrix appropriate for multiple-input, multiple-output (MIMO) quan-

titative feedback technique (QFT) design work. The plant was assumed to hi've

more inputs than observable outputs. The method of pre-specifying an I x I (esir-

able plant transfer matrix P,(jw ) for determining the necessary nonsquare. 7u x I

weighting matrix Q(j ) was investigated.

While a number of conclusions concerning the selection of an optimal Q(jA,)

were established and summarized at the end of Chapter 11. the basic problem of

integrating QFT design criteria with norm-minimization criterion remains.

Difficulties encountered in obtaining Qi indicate that it may be more advisable

to pursue optimization methods tLat yield a Q(jw) directly. The processes followed

in this study to obtain Q, = P-p'P did not provide suitable Q, for the given plant

and Pe(jw:); numerical precision difficulties encountered in this study were sufficient

to introduce RHP factors into det(Pe(jw)) over the set of plant parameter varia-

tions even though det(P(jw)) had no RHP factors over the set of all possible plant

parameter variations.

The following recommendations for areas of future study are made:

1. Investigate the use of an H2 or H, optimal controller Q(ju;) that robustly

stabilizes all plants P(jw) in a set of possible plants P(jw) for the case where

the disturbance d 2 (jW) is zero.

2. Investigate the use of a Qi whose numerator terms are the conjugates of some

element P, E Pi, the set of squared-down versions of that plant. Determine

which Pi E Pi, if any, allow a cascaded PjQ pair to either reduce the band-
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width over which diagonal dominance is not achieved or, if possible, satisfy

Rosenbrock's diagonal dominance condition.

3. Continue the investigation effort of this study after identifying an acceptable

method to obtain either the PJ1 or the Q, matrices. Determine if the use of

the pre-specified Pe(j -) improves the effectiveness of a QFT design involving

the given plant.
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